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This article aims to determine the role of oxidative stress (OS) in important eye diseases and draw 
attention to its importance in eye health. Oxidative stress is an important pathomechanism in 
many ocular degenerative diseases. This article offers an overview and recent updates on research 
regarding the mechanism and treatment of eye diseases caused by an imbalance between oxidants 
and antioxidants. We examine oxidative damage, such as lipid peroxidation, DNA damage, and 
apoptosis, that occurs in various parts of the eye, including the cornea, anterior chamber, lens, 
retina, and optic nerve. In particular, we evaluate the association of dry eye, pterygium, keratoconus, 
glaucoma, cataract, age-related macular degeneration, and diabetic retinopathy with OS. We believe 
that it will increase clinician awareness as it is a guiding review of natural antioxidant treatments for 
ocular diseases associated with oxidative stress.
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INTRODUCTION
Oxidative stress (OS), a condition characterized 
by an imbalance between the production of 
reactive oxygen species (ROS) and the capacity 
of the body’s antioxidant defense systems, 
has emerged as a central mechanism in the 
pathophysiology of many systemic and ocular 
diseases [1-5]. In the eye, a highly metabolically 
active organ with unique exposure to 
environmental oxidative challenges such as 
ultraviolet (UV) radiation and high oxygen 
tension, OS plays a critical role in initiating 
and propagating pathological processes [6]. 
This section aims to explain the fundamental 
relationship between OS and eye diseases, 
with particular attention to the molecular 
mechanisms, affected structures, and clinical 
implications.

The retina, lens, cornea, and other ocular tissues 
are constantly exposed to ROS generated 
from both endogenous metabolic activities 
and exogenous environmental factors [7]. 
Under physiological conditions, antioxidant 
systems—including enzymatic antioxidants 
such as superoxide dismutase (SOD), catalase, 
and glutathione peroxidase—work in concert 
with non-enzymatic antioxidants like vitamins 
C and E to neutralize ROS. However, when 
OS overwhelms these defenses, it leads to 
molecular damage, particularly in lipids, 
proteins, and DNA [4]. Such damage not only 
disrupts cellular integrity but also induces 
inflammatory and apoptotic pathways, 
contributing to tissue dysfunction and disease 
progression.
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Age-related macular degeneration (AMD) and cataracts 
are two of the most well-studied OS-mediated ocular 
diseases [8]. In AMD, oxidative damage to retinal pigment 
epithelial (RPE) cells and photoreceptors is compounded by 
the accumulation of lipofuscin and drusen, which further 
perpetuate inflammation and oxidative injury [9]. Similarly, 
cataractogenesis involves oxidative modifications of lens 
crystallins, leading to protein aggregation, loss of lens 
transparency, and visual impairment. Studies suggest that 
cumulative chronic OS plays a key role in the prevalence of 
these conditions among aging populations.

Beyond AMD and cataracts, OS has been implicated in 
the pathogenesis of other eye diseases such as glaucoma, 
diabetic retinopathy (DR), and keratoconus [10-12]. In glaucoma, 
elevated intraocular pressure (IOP) induces oxidative stress 
in the trabecular meshwork, impairing aqueous humor 
outflow and exacerbating optic nerve damage. In DR, chronic 
hyperglycemia triggers OS and inflammation, damaging 
retinal microvasculature and leading to vision-threatening 
complications. Keratoconus, a degenerative corneal disorder, 
is associated with oxidative damage to keratocytes and 
extracellular matrix proteins, contributing to corneal thinning 
and biomechanical instability.

The recognition of OS as a key driver of eye disease has spurred 
significant research into antioxidant-based interventions. 
Dietary and pharmacological antioxidants, such as those 
used in the Age-Related Eye Disease Studies (AREDS), have 
demonstrated efficacy in slowing the progression of AMD. 
Furthermore, novel strategies, including the development 
of mitochondria-targeted antioxidants and gene therapies 
aimed at enhancing endogenous antioxidant defenses, hold 
promise for mitigating oxidative damage in various ocular 
conditions. However, the clinical translation of these therapies 
faces challenges, including variability in patient responses and 
the need for precise delivery systems.

Understanding the role of OS in eye diseases has opened 
new avenues for both fundamental research and clinical 
innovation. By targeting oxidative mechanisms, researchers 
and clinicians aim to preserve vision and improve quality 
of life for patients affected by these debilitating conditions. 
The ongoing exploration of OS-related pathways will 
undoubtedly enhance our ability to diagnose, prevent, and 
treat eye diseases in the future. In this review, we aimed 
to provide a better understanding of the mechanism and 
treatment of OS-related important ocular diseases. In 
addition, this article draws attention to the therapeutic 
potential of natural antioxidants in oxidative stress-related 
eye diseases.

METHODOLOGY
Our review article used literature-inclusive databases such as 
PubMed and Google Scholar, and studies on oxidative stress-
related eye diseases conducted between 2015-2023 were 
evaluated.

Dry Eye

Dry eye disease (DED) is a multifactorial condition defined by 
disturbances in the tear film due to reduced tear production or 
excessive evaporation [13]. As one of the most prevalent ocular 
surface diseases, DED involves oxidative damage alongside 
inflammation. It can arise from systemic inflammatory 
conditions, localized ocular issues, or the use of common 
medications [14]. Additionally, environmental factors like 
pollutants, UV radiation, and ozone contribute to increased 
OS, inflammation, and tear film osmolarity, further impacting 
the ocular surface [15].

Hyperosmolarity is a key driver in DED pathology, perpetuating 
oxidative stress-induced damage to ocular epithelial cells. This 
stress leads to mitochondrial DNA (mtDNA) damage and lipid 
peroxidation in cell membranes [16]. Furthermore, OS activates 
inflammatory cascades that release mediators serving as 
biomarkers in tears [17]. For example, interleukin-6 in tears and 
conjunctiva stimulates the production of ROS, prostaglandins, 
and enzymes under conditions of low antioxidant presence [18].

Tear film components, such as lysozymes, immunoglobulins, 
and antioxidants like lactoferrin, uric acid, and cysteine, are 
essential for combating oxidative damage. However, tear 
dysfunction resulting from elevated OS and inflammation 
can harm glandular and epithelial cells [16]. Animal studies 
have shown that reduced antioxidant levels in tears promote 
glandular fibrosis and infiltration of monocytes and neutrophils 
into the lacrimal glands, leading to severe forms of DED [19]. 
Nakamura and colleagues demonstrated the accumulation of 
OS and its correlation with corneal epithelial alterations in a 
dry-eye mouse model [17]. Evidence highlights the role of OS 
as a direct and indirect contributor to ocular surface health 
deterioration, particularly in DED. Aging and numerous acute 
or chronic conditions exacerbate ROS expression on the ocular 
surface.

Pterygium

Pterygium is a degenerative condition characterized by 
fibrovascular tissue growth over the cornea, disrupting tear 
film stability and causing dry eye. Research has identified 
oxidative stress as a critical factor in pterygium pathology 
[20]. Prolonged UV exposure is the primary environmental 
trigger, resulting in chronic ROS generation and DNA 
damage [21, 22]. Biomarkers such as increased nitric oxide (NO), 
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altered antioxidant enzyme levels, modified p53 protein, 
and elevated 8-hydroxydeoxyguanosine indicate oxidative 
DNA damage in pterygium tissue [14, 21]. OS promotes 
inflammation, epidermal hyperplasia, angiogenesis, and 
lymphangiogenesis within pterygium tissue [22]. Additionally, 
overexpression of heat shock protein 90 enhances vascular 
endothelial growth factor (VEGF) activity, driving pterygium-
related angiogenesis.

Keratoconus
Keratoconus (KC) is a progressive degenerative disorder 
marked by corneal thinning and ectasia [23]. It is associated 
with an imbalance between pro-inflammatory factors and 
anti-inflammatory defenses [24]. Elevated OS index values have 
been observed in KC patients, with ROS playing a significant 
role in its pathogenesis [25]. OS disrupts extracellular matrix 
components such as collagen types XVIII and XV, leading to ECM 
remodeling and degradation [19]. Enzymatic activity, particularly 
matrix metalloproteinases (MMPs) like MMP-2 and MMP-
13, is implicated in this process [16, 26]. Additionally, abnormal 
antioxidant enzyme expression, mitochondrial damage, and 
stromal thinning contribute to KC progression [27, 28].

Glaucoma
Glaucoma, an age-related disease affecting over 50 million 
individuals, is the second leading cause of irreversible 
blindness worldwide. Emerging evidence links glaucoma 
to oxidative stress, with altered antioxidant defenses and 
oxidative damage observed in patient tissues [29, 30]. The 
trabecular meshwork (TM), a critical structure for aqueous 
humor outflow, is particularly vulnerable to OS due to limited 
antioxidant capacity [31]. OS damages TM cells, impairing 
their function and contributing to increased IOP in primary 
open-angle glaucoma [31]. Studies suggest that mitochondrial 
dysfunction and chronic ROS production play a significant 
role in TM cell damage and glaucomatous neurodegeneration 
[32]. Additional types of glaucoma, such as pseudoexfoliation 
syndrome and neovascular glaucoma, also exhibit oxidative 
and inflammatory mechanisms contributing to disease 
progression [33, 34].

While reducing IOP remains the primary treatment strategy, 
antioxidants such as omega-3 fatty acids, coenzyme Q10, 
and vitamins have shown promise in mitigating OS-related 
damage in glaucoma [35].

Cataract
Cataracts, a leading cause of visual impairment globally, 
are closely linked to oxidative stress. Factors such as UV 
exposure, smoking, diabetes, corticosteroid use, aging, and 
alcohol consumption represent essential risk factors that 
contribute to lens protein oxidation and opacification [36, 37]. 

The production of ROS and free radicals-induced oxidative 
stress is considered one of the effective mechanisms of 
cataract pathology. This disorder is amplified with reduced 
endogenous antioxidants with age. Consequently, the 
crystallin, the major protein in the lens, is oxidized. Oxidative 
damage to lens proteins, lipids, and DNA leads to structural 
and functional deterioration, resulting in visual impairment 
[38]. Lipid peroxidation and imbalances in intracellular ion 
homeostasis further exacerbate cataract formation [39, 40]. 
Furthermore, oxidative stress is caused by free radicals or 
oxidant productions, including lipid peroxidation, protein 
modification, and DNA damage, and results in cellular 
degeneration and neurodegeneration from damage to 
macromolecules. Antioxidant deficiencies are thought to play 
a role in cataract pathogenesis, highlighting the importance 
of maintaining oxidative balance [16].

Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is the leading 
cause of irreversible vision loss in individuals over 50. The 
pathogenesis involves genetic, environmental, and metabolic 
factors, with OS playing a central role [41]. The retina, particularly 
photoreceptors and RPE cells, is highly susceptible to OS due 
to its metabolic activity and exposure to light [42]. Lipofuscin 
accumulation, mitochondrial dysfunction, and PUFA oxidation 
contribute to oxidative damage in AMD [43]. Chronic OS also 
triggers inflammation, promoting angiogenesis and VEGF-
mediated vascular changes [44]. Targeting OS and inflammation 
may provide therapeutic avenues for AMD management.

Diabetic Retinopathy

Diabetic retinopathy (DR) is a microvascular complication of 
diabetes, affecting approximately one-third of individuals 
with the condition. It stands as a leading cause of vision 
loss among middle-aged and elderly populations and is 
recognized as a progressively neurodegenerative disease 
[45]. Early in the disease process, endothelial cell loss occurs 
due to apoptosis, which subsequently leads to an increase 
in non-functional, occluded capillaries. This results in 
heightened vascular permeability, thickened capillary 
membranes, edema, and hemorrhages. Damaged capillaries 
leak plasma and red blood cells into nearby retinal tissue, 
causing occlusions and promoting the release of growth 
factors like VEGF, which triggers abnormal blood vessel 
formation [46].

Similar to AMD, oxidative stress plays a role in DR; however, in 
diabetes, elevated oxidant levels and weakened antioxidant 
defenses exist independently of age, producing distinct 
adverse effects. Hyperglycemia not only damages endothelial 
cells but also enhances mitochondrial ROS production. 
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This process, influenced by metabolic memory, drives the 
progression of DR [56]. Excess mitochondrial ROS production 
can harm mitochondrial DNA and proteins, impairing the 
electron transport chain. This dysfunction perpetuates 
superoxide production even when blood glucose levels 
return to normal, contributing to the continued advancement 
of DR [47].

Beyond mitochondrial impairment and retinal vascular 
damage, oxidative stress also impacts the diabetic retina 
neurologically. ROS reduces levels of brain-derived 
neurotrophic factor, which is essential for neuronal survival, 
axonal growth, and synaptic function. Consequently, synaptic 
damage and neurotrophic factor degradation lead to neuronal 
cell death and vision problems [42]. Additionally, oxidative 
stress is closely tied to inflammation, as ROS stimulates 
both inflammatory responses and angiogenesis. Molecular 
mechanisms, such as the AGEs pathway, elevate cytosolic ROS 
and activate the NF-κB signaling pathway [48].

This activation upregulates pro-inflammatory proteins and 
drives the release of inflammatory mediators, including 
tumor necrosis factor-alpha, interleukins (IL-6 and IL-8), COX-
2, ICAM-1, MCP-1, VEGF, and other cytokines. Furthermore, 
ROS generated by NADPH oxidase enzymes can activate 
HIF-1 signaling, which contributes to proliferative diabetic 
retinopathy and angiogenesis [49]. On a molecular level, 
oxidative stress also plays a role in diabetic microvascular 
and macrovascular complications by inducing apoptosis, 
activating stress-related pathways, damaging proteins, DNA, 
and lipids, and accelerating AGE formation [42].

Natural Antioxidant Therapy
Antioxidant therapy has been extensively studied for a range 
of eye conditions, including dry eye, cataracts, glaucoma, 
and AMD [50-53]. The Age-Related Eye Disease Study (AREDS) 
study, which used antioxidant treatment containing vitamin 
C, vitamin E, and beta-carotene, showed that antioxidant 
treatment had a significant effect on cataracts and effectively 
slowed the progression of AMD [54]. 

Vitamin C (also known as ascorbic acid; AA) is used topically 
in ocular surface diseases and treats corneal epithelial defects. 
In addition, AA is known to prevent lipid peroxidation and 
cell apoptosis [55]. Meanwhile, vitamin C supplementation can 
lower the risk of cataracts in individuals with low antioxidant 
levels or low plasma AA concentrations [56]. However, some 
research suggests that vitamin C supplementation does not 
prevent cataracts, slow their progression, or decrease the 
likelihood of cataract surgery [57]. Although large-scale clinical 
trials have shown that AA supplementation does not prevent 
AMD, in vitro cell studies have demonstrated that pre-treating 

human RPE cells with AA can help them withstand oxidative 
stress [58]. In glaucoma, there is currently no consistent result 
regarding the effect of AA treatment on glaucoma [59]. ROS 
generated by increased IOP plays a significant role in the 
apoptosis of RGCs. As a result, managing IOP through AA 
treatment could potentially help slow down the degeneration 
of RGCs induced by ROS.

Along with antioxidant vitamins, various other natural 
antioxidant compounds, such as lutein, zeaxanthin, and 
curcumin, have been utilized to treat eye diseases associated 
with oxidative stress [60]. Incorporating lutein and zeaxanthin 
into the diet can significantly boost macular pigment optical 
density, which may help improve the proinflammatory 
and proangiogenic characteristics in patients with 
AMD. Phytochemical nutrients like green tea catechins, 
anthocyanins, resveratrol, and Ginkgo biloba have been found 
to reduce ocular oxidative stress. As a result, further clinical 
trials in this field are needed.

CONCLUSION
This review article describes oxidative stress in some 
important ophthalmologic diseases. In dry eye disease, 
hyperosmolarity triggers oxidative stress-induced damage 
and leads to mtDNA damage and lipid peroxidation in cell 
membranes; it also releases the inflammatory cascade in 
tears. Long-term UV exposure is an important OS trigger 
in pterygium disease; it causes chronic ROS formation and 
DNA damage. Keratoconus is primarily inflammatory and 
has a pathophysiology, but it is known that progression 
occurs with increasing OS. It is known that mitochondrial 
dysfunction and chronic ROS production play an important 
role in TM cell damage and glaucomatous neurodegeneration 
with increasing OS in glaucoma patients. Cataract is an 
important cause of visual disability, and its high incidence 
is due to its association with oxidative stress caused by 
continuous intraocular penetration and the associated 
photochemical production of free radicals and other 
oxidants. Increased ROS production in advanced age and 
diabetes leads to an impaired antioxidant defense system, 
causing oxidative damage in the lens. Free radicals oxidize 
subcellular components such as lipids and phospholipids 
and can cause membrane lipid peroxidation and trigger the 
onset of retinopathies. As can be seen, oxidative stress plays 
an active role in the pathophysiology of many diseases in 
ophthalmology. Natural antioxidant treatments, including 
vitamin C, vitamin E, and beta-carotene, contribute positively 
to reducing the prediction and progression of eye diseases. 
We believe that it will increase clinician awareness, as it is a 
guiding compilation of natural antioxidant treatments for 
ocular diseases related to oxidative stress.
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