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Glutamate operates as the principal stimulator neurotransmitter in the mammalian central 
nervous system and is essential for cognitive functions, memory, and learning processes. It serves 
as a metabolic precursor of γ-aminobutyric acid (GABA) and is a constituent of the antioxidant 
glutathione. The glutamate-glutamine cycle regulates glutamate levels by facilitating its recycling 
between astrocytes and neurons. Glutamate is conveyed into synaptic vesicles by vesicular glutamate 
transporters (VGLUT) and is discharged into the synaptic cleft during neuronal depolarization. 
Extracellular glutamate is taken away from the synapse by excitatory amino acid transporters 
(EAAT), particularly those found in astrocytes, which help maintain glutamate homeostasis and 
prevent excitotoxicity. Glutamate receptors are fundamentally categorized into two primary classes: 
ionotropic (NMDA, AMPA, Kainate, Delta) and metabotropic. Ionotropic glutamate receptors 
(iGluRs) mediate fast excitatory responses, with N-methyl-D-aspartate (NMDA) receptors playing 
a key role in processes like synaptic plasticity and long-term potentiation (LTP) through calcium 
(Ca2+) influx. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are crucial 
for rapid synaptic transmission and for the activation of NMDA receptors. Metabotropic receptors 
regulate intracellular signaling pathways via G-protein-coupled mechanisms. Dysfunction in the 
glutamate system is linked to various neurological disorders such as epilepsy, autism spectrum 
disorders, schizophrenia, and depression. Excess glutamate accumulation can lead to excitotoxicity 
and cell death. Furthermore, sex differences in glutamate levels may explain the varying 
impacts of neurological disorders across genders. Glutamate receptor agonists and antagonists 
present potential drug targets for treating glutamatergic system-related pathologies. Ketamine, 
memantine, riluzole, and D-cycloserine (DCS) are among the medicines employed in this domain. 
This review thoroughly analyzes the existing literature regarding the function of glutamate in the 
central nervous system. This review focuses on contemporary research on the association between 
glutamate receptors and neurological diseases. This study employs the literature review technique 
to offer a comprehensive perspective on the physiological and pathological roles of glutamate.
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INTRODUCTION
Glutamate is the primary excitatory neurotrans-
mitter in the mammalian central nervous sys-
tem (CNS), regulating 70-90% of synaptic 
transmission within the CNS.[1] It is made from 

α-ketoglutarate, which is a step in the Krebs 
cycle. The enzymes aspartate aminotransfer-
ase or glutamate dehydrogenase speed up 
the reaction.[2,3] It is considered the main neu-
rotransmitter for neocortical and hippocampal 
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pyramidal neurons. With this feature, it is involved in mental 
functions such as cognition and memory. The brain contains 
higher concentrations of glutamate than other amino acids 
[4]. Glutamate is not only found in the central nervous system 
but also serves as a neurotransmitter present in various pe-
ripheral tissues such as the gastrointestinal system [5,6]. Gluta-
mate serves as a metabolic precursor for γ-aminobutyric acid 
(GABA), the principal inhibitory neurotransmitter in the brain. 
It is also a component of other amino acid-derived chemicals, 
including glutathione, which functions as an antioxidant. 
Numerous metabolic investigations have demonstrated that 
nearly all glucose entering the brain is ultimately transformed 
into glutamate [7–9].

Not only does glutamate help send signals of excitement 
between presynaptic and postsynaptic sites, but it is also 
recycled and controlled by glial cells through excitatory amino 
acid transporters (EAATs) [10]. To make this cycle work, glutamine 
synthetase is first found in astrocytes, which are the main glial 
cells in the brain and spinal cord. It helps make glutamine 
from glutamate [11]. The glutamine is then sent to neurons by 
astrocytes. Enzymes called glutaminase or glutamate synthase 
in these neurons change glutamine back into glutamate. This 
creates a glutamate-glutamine cycle between astrocytes and 
neurons [12,13]. In summary, glutamate is partially recycled 
or degraded through the glutamate-glutamine cycle [14]. 
Glutamine also acts as a precursor for the biosynthesis of 
GABA, an inhibitory neurotransmitter [15]. Finally, astrocytes 
use glutamine to control the net production of glutamate and 
GABA, which are the two principal neurotransmitters for the 
nervous system [16].

Glutamate is broken down by the above-mentioned processes 
and then put into synaptic vesicles by vesicular glutamate 
transporters right after it is made. It is then released from 
these vesicles into the synaptic gap when neurons depolarize 
[1]. It passively diffuses into the synaptic cleft and attaches 
to presynaptic, postsynaptic, and perisynaptic glutamate 
receptors. Subsequently, extracellular glutamate is eliminated 
from the synapse through EAATs. Some of the extracted 
glutamate is reintroduced into synaptic vesicles by vesicular 
glutamate transporters (VGLUTs) [17].

VGLUTs primarily facilitate the absorption of extracellular 
glutamate into presynaptic vesicles for its storage. There exist 
three varieties of VGLUTs: VGLUT1, VGLUT2, and VGLUT3 [18]. 
VGLUT1 and VGLUT2 are located in glutamatergic neurons, but 
VGLUT3 predominantly resides in GABAergic, monoaminergic 
and cholinergic neurons [19]. It has also been said that 
VGLUT1 and VGLUT2 are present in glial cells and may help 
depolarized astrocytes release glutamate. It has been said that 
lower levels of VGLUT may slow down the flow of glutamate 

to synaptic vesicles and damage neurons. VGLUTs work by 
sending glutamate molecules to the synaptic cleft in a way 
that depends on Ca2+ cation and soluble N-ethylmaleimide-
sensitive factor binding protein receptor (SNARE) [10].

Certain astrocyte transporters take synaptic glutamate out of the 
synaptic cleft when things are working normally [10]. In this case, 
EAATs are found at glutamatergic synapses and perisynaptic 
glial cells, and they play a big role in keeping glutamate levels 
stable [20,21]. The principal high-affinity glutamate transporters 
are identified as GLAST (EAAT-1), Glt-1 (EAAT-2), and EAAC-
1 (EAAT-3). The astrocyte EAAT-2 and the glial glutamate 
transporter (GLT-1) in rats uptake extracellular glutamate and 
convert it into glutamine for cellular recycling [10]. EAAT-1 and 
EAAT-2 are predominantly expressed in astrocytes, whereas 
EAAT-3 is primarily expressed in neurons [16]. Given that EAAT-1 
and EAAT-2 transport glutamate with more efficiency than EAAT-
3, it is evident that astrocytes are responsible for the removal of 
glutamate from the synaptic cleft [22]. Excessive extrasynaptic 
glutamate receptor stimulation triggers apoptosis. EAATs, which 
are involved in the reabsorption of surplus glutamate in the 
extracellular space, are essential for preventing excitotoxicity [23]. 
When it comes to the central nervous system, the concentration 
of glutamate is highest within the cells themselves. The 
intracellular glutamate concentration is much higher than 
that of extracellular fluid, cerebrospinal fluid, or plasma. 
Since disturbances in the glutamatergic system can lead to 
deleterious effects, the concentration of glutamate in the brain 
is tightly maintained and regulated by many mechanisms, such 
as maintaining glutamate/glutamine balance by endothelial 
cells of the blood-brain barrier, neurons, and astrocytes [24]. 
In a healthy adult brain, a highly sensitive system maintains 
equilibrium between the excitatory and inhibitory actions of 
glutamate and GABA molecules [25]. This balance can be upset, 
and high levels of glutamate can make glutamate receptors stay 
active for longer. This can cause more calcium to enter neurons. 
This phenomenon is called excitotoxicity [26]. Increasing evidence 
supports the fact that excitotoxicity, glutamatergic dysfunction, 
and neuroinflammation may be closely related [27]. 

When glutamate is released, it sends a signal that can cause 
proinflammatory cytokines like tumor necrosis factor alpha 
(TNF-a) and interleukin-1 beta (IL-1b) to be released [28]. 
Glutamate enhances the release of cytokines; cytokines can 
also potentiate glutamate release. During neuroinflammatory 
processes, the number of astrocytes that express high-affinity 
glutamate transporters goes down. These transporters get rid of 
extra glutamate from the synaptic cleft. TNF-a increases synaptic 
currents that are excitatory by removing AMPA receptors from 
synapses and decreasing synaptic currents that are inhibitory 
by removing GABA receptors from synapses. This suggests an 
excitatory shift of the inhibition/excitation balance [24,29]. 
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GLUTAMATE RECEPTORS
Following the discharge of glutamate molecules into the synaptic 
gap, activation of glutamate receptors occurs [30]. Glutamate acts 
on these receptors through a post-synaptic effect [31]. Glutamate 
receptors are divided into two different groups: ionotropic 
glutamate receptors (iGluRs) and metabotropic glutamate 
receptors (mGluRs) (Table 1) [32]. iGluRs are a type of glutamate 
receptor that allows ions to enter and causes rapid stimulation. 
They have a binding site for an agonist. Some special brain 
cells called mGluRs work with long-term potentiation (LTP) and 
synaptic activity [10,33]. Both of these receptor types have a broad 
spectrum of effects [34].

Ionotropic Glutamate Receptors (iGluRs)
iGluRs are ligand-activated ion channels that facilitate 
rapid excitatory neurotransmission [35]. iGluRs are split into 
four groups based on which agonists they prefer [30]. These 
receptors are called NMDA receptors, AMPA receptors, Kainate 
receptors and Delta/Orphan receptors [36]. 

NMDA Receptors
NMDA receptors exhibit the strongest affinity for glutamate 
[37]. These receptors let three main cations (Na+, K+, and Ca2+) 
pass through them for neurotransmission. They also have a 
part inside the cell that depends on mechanisms inside the 
cell, second messenger systems, and synaptic elements. 
On top of that, the same receptors have an extracellular 
N-terminal region that can bind ligands. The functional parts 
of the NMDA receptor are located between these two areas 
that make up the skeleton of the receptor. These functional 
parts are involved in the efflux mechanism [38]. When NMDA 
receptors are activated, the postsynaptic region has more Ca2+, 
which causes synapses to change shape. LTP or long-term 

depression (LTD) can happen depending on how fast and how 
much Ca2+ enters through these receptors [39]. 

Three different NMDA receptor subunits have been found: 
NR1, NR2A/B/C/D, and NR3A/B. There are 8 different variants 
of the NR1 subunit and 4 different isoforms of the NR2 subunit. 
A ligand-binding site for glutamate is in the NR2 subunit. 
Other binding sites are in the NR1 and NR3A/NR3B subunits 
for glycine, d-serine, and d-alanine co-agonists. The overall 
structure of the receptor is made up of heterotetrameric 
complexes that contain the basic receptor subunits [40]. The 
most common NMDA receptor subunit combination is NR1 
and NR2A [41]. Researchers have found that attachment to the 
co-agonist region in the receptor speeds up the opening rate 
of the NMDA receptor channel. This makes it easier for brain 
signals to send more quickly [42]. In a nutshell, both glutamate 
and glycine (or d-serine and d-alanine) binding are needed to 
make NMDA receptors work [43]. 

NMDA receptors are obstructed by Mg2+ ions during resting 
membrane potential [37]. Evans and Watkins looked at how 
glutamate receptors affect neurons in the spinal cord and 
found that the Mg2+ cation blocks the NMDA receptor very 
specifically. It was discovered that the Mg2+ cation worked 
even at very low concentrations (micromolar levels) and could 
block NMDA receptors even at physiological levels (~1 mM). 
After a while, these results led to the idea that Mg2+ ions can 
stop ion channels in the NMDA receptor by working without 
competing with them [44]. When the NMDA receptor is turned 
on, Mg2+ blockade is removed. This lets Ca2+ and Na+ cations 
enter the post-synaptic neuron [10]. This influx of calcium ions 
can start signaling pathways that help cells stay alive and grow. 
These encompass the Phosphatidylinositol-3-kinase (PI3K)-

Table 1. Glutamate receptors and their subtypes

      Glutamate Receptors

   Ionotropic Glutamate     Metabotropic Glutamate 

   Receptors (iGluRs)     Receptors (mGluRs)

 NMDA AMPA  Kainate Delta  Group I Group II  Group III

 NR1 GluA1  KA1 δ1  mGluR1 mGluR2 mGluR4

 NR2A/B/C/D GluA2  KA2 δ2  mGluR5 mGluR3 mGluR6

 NR3A/B GluA3  GluR5     mGluR7

  GluA4  GluR6     mGluR8

    GluR7

NMDA: N-methyl-D-aspartate; NR: NMDA receptor; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; GluA: AMPA receptor; δ: Delta receptor; 
KA: Kainate receptor; GluR: Glutamate Receptor; mGluR: Metabotropic glutamate receptor.
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protein kinase B (AkT) pathway, the mammalian target of 
rapamycin (mTOR) pathway, and the release of brain-derived 
neurotrophic factor (BDNF) [45,46]. 

NMDA receptors are crucial for neuronal differentiation, 
synapse formation, and degradation throughout fetal 
development. Researchers have also found that NMDA 
receptors help control the movement of radial neuronal cells 
and some tangential neuronal cells [30]. The expression of most 
of the NMDA receptor subunits reaches its highest levels in the 
period up to 3 weeks after birth. This supports the contribution 
of NMDA receptors to a process that supports synaptic 
plasticity during this period. NMDA receptor expression, 
which gradually decreases after the third postnatal week, can 
be considered a kind of synaptic elimination mechanism [47]. 

NMDA receptors are also crucial in the hippocampus, 
facilitating the organization and retention of associative 
episodic memory. NMDA receptors are very important for 
controlling the connections that are needed to remember 
things and for storing evidence of what happened. The 
amygdala and piriform cortex both use the same receptors 
to control fear conditioning and the link between fear and 
reward. This information indicates that NMDA receptors 
facilitate diverse learning and memory processes in many 
regions of the brain [48]. Research has demonstrated that 
NMDA-enhancing agents potentially improve cognition and 
memory and positively affect quality of life [49]. 

AMPA Receptors

AMPA receptors are tetramers consisting of four different 
subunits (GluA1-4) in different combinations. AMPA receptors 
are low-affinity glutamate receptors that mediate much 
of the rapid synaptic neurotransmission that occurs in the 
mammalian brain. This property is also known to give AMPA 
receptors the potential to become inactive more rapidly 
than NMDA receptors. AMPA receptors have five structural 
compartments. A big part that is outside of cells, a part that is 
inside cells, a part that goes across the membrane, and agonist 
binding sites made up of hydrophobic and extracellular 
domains are these [10,30,50]. 

NMDA receptors are slower to excite than AMPA receptors, 
which are turned on by Na+ influx [51]. It’s possible for activated 
AMPA receptors to change where they are in the cell and how 
they’re moving around. This can lead to LTP and LTD [30,52]. In 
addition, AMPA receptors activated by glutamate also activate 
calcium channels and trigger the mTOR signaling pathway [53]. 

Depolarization blockade of NMDA receptors can also be 
eliminated by activation of AMPA receptors. It is possible for 
glutamatergic neurotransmission to get stronger by activating 

AMPA receptors. Excitatory post-synaptic potentials (EPSPs) 
are in charge of rapid (EPSPs) and are an important part of 
learning and memory. AMPA receptors significantly contribute 
to the enhancement of synaptic plasticity [43].

Kainate Receptors

Kainate receptors are homomeric/heteromeric tetramers 
made up of five different subunits called KA1, KA2, GluR5, 
and GluR6. The structural skeleton of each subunit is the 
same. It has an extracellular amino-terminal domain, a ligand 
binding site, a re-entrant loop domain, three transmembrane 
α-helices, and an intracellular carboxy-terminal domain. 
KA1 and KA2 associate with GluR5-7 to form heteromeric 
receptors. These receptors exhibit distinct kinetic features and 
possess greater affinity for kainate [54]. Like AMPA receptors, 
kainate receptors become active when Na+ comes in and help 
with fast stimulation [51]. While kainate receptors’ physiological 
role has not been elucidated as fully as that of other glutamate 
receptors, it is known that they help form neuronal networks 
and play a part in development. It is known that the KA2 kainate 
receptor subunit helps synaptic circuits that support learning 
and memory function mature in the best way [24]. Kainate 
receptors’ main job is to control how synapses send signals 
and how easily neurons can fire [55]. They fulfill these functions 
by contributing to synaptic plasticity in the hippocampus and 
sensory cortex [56]. All of these roles of kainate receptors are 
shown by the fact that they control neuronal networks and 
synaptic plasticity within the neonatal hippocampus [57].

Delta/Orphan Receptors

Despite limited knowledge on delta or “orphan” receptors, 
research indicates their potential involvement in 
synaptogenesis and synaptic plasticity [58]. Some studies in 
rats have identified two delta receptor subunits, δ1, which 
is expressed almost throughout the developing brain, and 
δ2, which is mainly expressed in the cerebellum. From these 
studies, it was seen that the δ2 subunit doesn’t connect 
functionally with other receptor subunits, but it does play 
a big role in synaptic plasticity in the cerebellum [59]. Delta 
receptors are implicated in neurological disorders such as 
intellectual disability, autism spectrum disorder, cerebellar 
ataxia, and paraplegia. Nonetheless, limited information exists 
on the influence of these receptors on the progression of 
various disorders [30].

Metabotropic Glutamate Receptors (mGluRs)

mGluRs comprise eight subtypes categorized into three 
groups according to their signaling routes, pharmacological 
characteristics, and DNA sequence homology [60]. Group I 
includes mGluR1 and mGluR5, Group II consists of mGluR2 and 
mGluR3, while Group III include mGluR4, mGluR6, mGluR7, 
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and mGluR8 subunits [1]. These groups are pharmacologically, 
genetically, and functionally differentiated from each other [61].

mGluRs facilitate activation or inhibition processes at the 
cellular and molecular levels by binding ligands to G-protein-
coupled second messenger systems extracellularly [1]. These 
receptors, which associate with guanine nucleotide-binding 
proteins (G proteins), release GDP upon activation by 
glutamate and modulate enzymes, ion channels, and vesicular 
transport functions [60]. All mGluR subunits/types are classified 
within the class C family of G protein-coupled receptors 
(GPCRs) and are characterized by extensive ligand-binding 
domains situated in the extracellular region at the N-terminus 
[17]. Proteins belonging to the GPCR family are composed of 
constitutive dimers, including mGlu receptors. The activation 
mechanism of mGlu receptors generally occurs in three 
basic steps: a) Competitive agonists bind to the venus flytrap 
domain (VFD) domain to close and stabilize it, b) the closed 
VFD transmits its signal through the cysteine-rich domain 
(CRD), and c) G-protein activation occurs [62]. 

The distribution of mGluRs depends on the receptor type: 
Group I mGluRs are located adjacent to synaptic dendritic 
spines, with mGluR5 present in the cortex and mGluR2 and 
mGluR3 in the hippocampus, exhibiting both pre-synaptic 
and post-synaptic localization in glutamatergic and GABAergic 
neurons. Moreover, mGluR3 is present in glial cells as well. 
mGluRs are common in presynaptic glutamate terminals and 
GABA interneurons. One of the remarkable effects of mGluR 
activation in the brain is that it promotes NMDAR-mediated 
neurotransmission [63]. Group I mGluRs specifically enhance 
presynaptic glutamate release, whereas Group II mGluRs 
diminish this release [43].

There are three groups of receptors: group II (mGluR2 and 
mGluR3) and group III (mGluR4, mGluR6, mGluR7, and 
mGluR8). Group II and Group III receptors are most common 
in presynaptic regions [61]. Group II and Group III mGluRs are 
mostly found at the pre-synaptic of glutaminergic, GABAergic, 
and neuromodulatory synapses. They also play a role in 
lowering cAMP levels through the inhibitory Gi/o signaling 
pathway [64].

Group I mGluRs
Within group I mGluR, mGluR1 and mGluR5 are generally 
located at postsynaptic sites that transmit/regulate downstream 
signaling pathways via Gq proteins and associated effectors. 
Receptors in this group bind to Gq/11 to activate phospholipase 
Cβ, and as a result of this activation, phosphoinositides are 
hydrolyzed to inositol triphosphate and diacylglycerol. This 
mechanism initiates intracellular calcium mobilization and 
Protein Kinase C (PKC) activation [65]. 

Activated group I mGlu receptors activate phospholipase 
D, cyclic adenosine monophosphate (cAMP) synthesis, 
arachidonic acid release, mitogen-activated protein kinase 
(MAPK) pathway, PI3K pathway, and other downstream 
effector molecules specific to cell type or neuronal population. 
In particular, activation of the MAPK/ERK pathway and mTOR/
p70S6 kinase by group I mGlu receptors is recognized as crucial 
for synaptic plasticity processes [62]. Furthermore, G-protein-
independent cascades involving Src-like protein kinases have 
also been identified for group I mGlu receptors [66]. 

LTP and LTD appear to rely on group I mGluRs similarly [62]. 
These receptors are usually found at postsynaptic sites. 
Activation of these receptors primarily stops cells from 
depolarizing through potassium channels. This keeps action 
potentials going [67]. As an example, mGluR1 makes calcium 
signaling better through IP3 [68], and mGluR5 changes 
frequency coherence at hippocampal synapses by starting 
somatic calcium transients [69]. According to Manzoni and 
Bockaert (1995), presynaptic group I mGluRs hurt postsynaptic 
mechanisms by blocking glutamate transmission, which could 
lead to LTD. Additionally, group I mGluRs on the postsynaptic 
side regulate neurotransmitter release on the presynaptic side 
by modulating endocannabinoids as backwards messengers 
[69,70]. It depends on protein synthesis and afferent frequency 
how much group I mGluRs help with persistent synaptic 
plasticity [62]. Some inside-cell processes and newly made 
proteins help make this change possible depending on how 
many mGluRs are turned on, and changes in frequency are 
a big part of figuring out which way the link between two 
neurons goes [71]. Additionally, the competition between 
mGluR5 and NMDARs may make sure that synaptic responses 
to afferent stimulation work both ways [72], which suggests that 
group I mGluRs are important for both LTP and LTD [62].

The functional roles of mGluR1 and mGluR5 receptors vary 
across distinct brain regions according to their specific 
distribution. In certain locations, these receptors coexist, 
whereas in others, one may predominate [73]. Group I mGluRs 
play critical roles in LTP induction, particularly in hippocampal 
CA1 neurons [17], layer V pyramidal neurons of the cortex [74] 
and lateral amygdaloid neurons [75]. Similarly, LTD mediated 
by group I mGluRs plays significant roles at synapses between 
neurons in the CNS [76]. mGluR1 and mGluR5 have distinct 
operational roles related to memory: mGluR1 is essential for 
information acquisition, whereas mGluR5 plays important 
roles in memory maintenance and spatial memory [17]. Thus, 
mGluR5 receptors have an important role in modulating 
behavioral sensitivity to psychostimulants [77]. Preclinical 
research shows that mGluR5 participates in forms of synaptic 
plasticity in medium spiny neurons (MSNs) of the nucleus 
accumbens (Nac) that govern cognitive acquisition and 
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retention mechanisms [78]. Thus, mGluR5 plays a critical role 
in the relationships between neuroplasticity, environmental 
cues, rewards, and reinforcing behaviors in MSNs [79]. Moreover, 
at the behavioral level, mGluR5 plays an important role in 
locomotor responses to novel environments, sensorimotor 
gating, anxiety, and cognitive functions [80].

Group II mGluRs

Although the group II mGluRs mGluR2 and mGluR3 coexist 
in distinct parts of the brain, mGluR3 exhibits a broader 
distribution compared to mGluR2. These two receptors 
also differ in cellular localization: mGluR2 is predominantly 
expressed in presynaptic nerve terminals, while mGluR3 is 
located in presynaptic elements, postsynaptic structures, 
and glial cells. Group II mGluRs function as a possible 
autoregulatory mechanism that protects neurons against 
excitotoxicity by reducing glutamate release from presynaptic 
terminals [43]. Elevated concentrations of mGluR2 and mGluR3 
have been observed in brain regions associated with the 
regulation of reward and motivational mechanisms, such as 
the NAc, dorsal striatum, HPC (hippocampus), AMY (amygdala), 
PFC (prefrontal cortex), thalamus, and olfactory bulb [17]. In 
addition, in the human brain, mGluR3 is highly expressed in 
the neocortex, caudate putamen, and substantia nigra [81]. It 
is also known that mGluR3 is present in dendritic spines and 
astrocytic activity sites [82].

Group III mGluRs

The receptors included in this group are mGluR4, mGluR6, 
mGluR7, and mGluR8 [83]. Group III mGluRs are predominantly 
situated in presynaptic nerve terminals. These receptors are 
crucial in modulating neurotransmitter release and behavioral 
plasticity within the limbic circuit. Group III mGluRs exhibit an 
inverse relationship with adenylate cyclase-cAMP (AC-cAMP) 
signaling; thus, their activation at presynaptic terminals inhibits 
glutamate release from cortical terminals. While mGluR6 
is present in the retina, the other three receptors included 
in this category are predominantly expressed in the CNS. 
mGluR4 has the highest expression level in the cerebellum, 
with modest expression in the olfactory bulb and thalamus [83]. 
mGluR7 is the most extensively expressed member of Group 
III mGluRs [84]. It is prominently expressed in the olfactory bulb, 
hippocampus, and hypothalamus. mGluR8 has a more limited 
expression in the CNS compared to mGluR4 and mGluR7. 
The most intensely expressed regions are the piriform cortex, 
olfactory bulb, thalamus, pons, and mammillary body [17].

EFFECTS OF GLUTAMATE AND ITS RECEPTORS 
ON SYNAPTIC PLASTICITY
Neuroplasticity refers to alterations in the anatomical 
characteristics and functions of neurons and synapses in the 

brain resulting from internal and external inputs. Both iGluRs 
and mGluRs are essential for LTP and LTD [17]. iGluRs, which 
are sensitive to glutamate as a ligand, are crucial for brain 
plasticity [85].

The equilibrium between glutamate and GABA is crucial for 
brain growth and development. Glutamate is an excitatory 
neurotransmitter, and GABA is an inhibitory neurotransmitter. 
Nonetheless, GABAergic neurons establish excitatory 
connections that transition to inhibitory as brain development 
progresses. It’s important for synaptic plasticity and brain 
development and function that the excitation-inhibition (E/I) 
balance stays stable at neuronal synapses and neural circuits [24].

RELATIONSHIP BETWEEN GLUTAMATE AND 
GENDER
Functional sex differences in neurotransmitter systems in living 
organisms have been observed [24]. Clinical studies highlight 
that glutamate levels in frontal gray matter and basal ganglia 
(BG) are increased in women compared to men, but in parietal 
gray matter (PGM), men have higher glutamate concentrations 
than women [86]. Further research has revealed sex differences 
in glutamate concentrations in specific cerebral regions in 
more detail. For example, women have higher glutamate 
concentrations than men in the sensorimotor cortex, anterior 
cingulate cortex (ACC), striatum (STR), and cerebellum [87,88]. 
Conversely, glutamate concentration in the prefrontal cortex 
(PFC) is higher in men than in women [89]. In addition to 
differences in glutamate concentration in the CNS, gender-
based differences in plasma glutamate levels have also been 
identified. Clinical studies indicate elevated glutamate levels 
in men compared to women, which are inversely associated 
with estrogen and progesterone levels [90]. Sex differences in 
glutamate concentrations become more pronounced with 
age. In particular, glutamate levels in the basal ganglia and 
PGM decrease with age in men, but not in women [86], whereas 
a more significant age-related reduction in ACC glutamate 
levels is observed in females [91]. Furthermore, blood glutamate 
levels show an age-related elevation in plasma in women, 
but not in males [92]. In summary, many gonadal hormones, 
particularly estradiol (E2), may alter the expression of sex-
specific glutamate and receptors. Nevertheless, it is crucial 
to acknowledge that further investigation is necessary in this 
domain [93].

It has been suggested that gender-specific factors increase the 
risk of autism in men or protect women against autism because 
men are more affected than women. The sex-based differences 
in the glutamate system highlighted above underscore the 
necessity of comprehending the molecular processes via 
which glutamate malfunction may exert divergent effects on 
males and females [24].
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GLUTAMATE RECEPTOR AGONISTS AND 
ANTAGONISTS
In the historical process, many substances with agonist and 
antagonist properties related to glutamate receptors have 
been identified. While some of these substances play a role in 
glutamatergic system pathologies, some of them lead to drugs 
targeted for the treatment of these pathologies. Examples 
of some of these substances include dextromethorphan, 
an approved over-the-counter cough suppressant, a non-
competitive NMDA receptor antagonist, and sigma-1 
receptor agonist [94]. Dextromethorphan may additionally 
provide therapeutic benefits through the inhibition of 
serotonin reuptake [95]. Dextromethorphan shows activity at 
receptors similar to ketamine. In vitro studies demonstrated 
that dextromethorphan exhibits greater NMDA receptor 
antagonist action than ketamine and possesses superior 
efficacy for sigma-1 [96]. However, dextromethorphan is rapidly 
metabolized by the cytochrome P450 liver enzyme CYP2D6, 
which prevents therapeutic plasma levels from being achieved 
by oral administration [96,97]. 

Some of the NMDA receptor antagonists approved in the 
market for various indications are amantadine, memantine, 
and acamprosate [98]. Memantine is a low to medium affinity, 
non-competitive NMDA receptor antagonist approved 
by the FDA, TPD, EMA, TGA, and the Pharmaceuticals and 
Medical Devices Agency of Japan (PMDA) as a symptomatic 
treatment for Alzheimer’s disease dementia [94]. Esmethadone, 
a potentially novel NMDA receptor antagonist, exhibits 
low affinity for NMDA receptors, demonstrates ketamine-
like retention within NMDA receptor channel pores, and 
can dissociate from the NMDA receptor when in the open 
configuration [99]. MIJ821 (onfasprodil) is an NMDA receptor 
antagonist under investigation for intravenous infusion or 
subcutaneous injection delivery [100]. Riluzole is a substance 
that can inhibit presynaptic glutamate release and engage 
with iGluRs [101].

When ketamine was used as a treatment, it was seen to 
increase pre-synaptic glutamate release and activate AMPA 
receptors. It turned on AMPA receptors, which then turned on 
more BDNF and mTOR. This started an intracellular signaling 
pathway that helps neurons grow [102,103]. Because of this, it was 
suggested that ketamine may also help treat depression [103].

Another NMDA antagonist, D-Cycloserine (DCS), is a broad-
spectrum antibiotic that principally treats tuberculosis that 
has developed resistance to previous treatments. It is a 
partial agonist that can attach to the glycine site of the NMDA 
receptor. At doses of 100 mg/day and above, DCS works as an 
NMDA receptor antagonist [104]. 

(R,S)-3,5-dihydroxyphenylglycine (DHPG), an agonist of group 
I mGluRs, has been shown to elicit LTD and LTP in several 
brain areas [105]. CFMTI, a selective mGluR1 antagonist, can 
ameliorate the deficits in socialization caused by the NMDAR 
antagonist MK-801 in rats [106]. mGluR agonists can induce 
synaptic plasticity as well as intrinsic plasticity, i.e., permanent 
changes in membrane excitability [44]. 

N-acetyl-aspartyl-glutamate (NAAG) is an acetylated dipeptide 
present in μM-mM concentrations and selectively localized in 
the brain [107]. NAAG is an endogenous mGluR3 agonist that 
is inactivated by N-acetylated α-linked acidic dipeptidase 
(NAALADase) and hydrolyzed into N-acetyl-aspartate and 
glutamate [108]. NAAG, which exhibiting strong affinity for 
mGluR3 [108], and low affinity to NMDA receptors [109], can 
cause various reactions at pre-synaptic, post-synaptic, and 
extra-synaptic sites [110,111]. NAAG can exert agonistic or 
antagonistic effects on NMDA receptors. The factors that 
cause this difference may be the composition of receptor 
subunits or the pH level of the tissue [110–112]. Activation of 
NAAG is thought to reduce glutamate release [113]. NAAG 
is proposed to influence several diseases and conditions, 
including stroke, traumatic brain injury, epilepsy, age-related 
neurodegenerative disorders, schizophrenia, and pain, via 
modulating glutamate release [114].

PATHOLOGY OF THE GLUTAMATERGIC SYSTEM
Deficiencies in the expression and regulation of glutamate 
receptors have been linked to a variety of neuropathological 
conditions during development, including epilepsy, autism 
spectrum disorders, schizophrenia, and depression [58,115,116]. 
Glutamate is crucial for direct brain development and 
synaptogenesis [117,118], regulation of memory, behavior, 
and motor activities [119–121] and gastrointestinal functions 
[122,123] leading to glutamate-based pathologies [24]. These 
pathological conditions can be caused by deficits in synapse 
formation, excessive and abnormal glutamate signaling, 
and defects in the development of neural circuits, affecting 
both prenatal and postnatal processes. As a result, these 
neurodevelopmental disorders can negatively affect the lives 
of affected individuals in the long term [30]. 

There are several examples of glutamatergic system pathology. 
One of them is that glutamate, through NMDA and AMPA 
receptors, can cause cell death in seizures, cerebral ischemia, 
traumatic brain injury, and perinatal asphyxia. It starts the 
apoptosis process when the amount of Ca2+ inside cells goes 
up. This sets off enzymes such as phospholipases, proteases, 
endonucleases, and nitric oxide synthases [124].

mGluRs are known to be associated with schizophrenia 
because they modulate NMDAR-mediated neurotransmission 
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[60]. It has been shown that increased Ca2+ influx with glutamate 
release may lead to excitotoxicity through AMPA receptors 
permeable to these ions and may even cause epilepsy [125]. 

Other studies indicate that stress may predispose individuals 
to LTD in the CA1 area of the hippocampus by increasing 
glutamate release or inhibiting glutamate reuptake [126–129]. Both 
pathways have demonstrated the activation of extra-synaptic 
NMDA receptors, predominantly involving the NR2B subunit, in 
the hippocampal CA1 region of adult animals [128–131].

THE ROLE OF GLUTAMATE AND ITS RECEPTORS 
OUTSİDE THE CENTRAL NERVOUS SYSTEM
Research has revealed that glutamate is not only a 
neurotransmitter found in the brain but also plays important 
roles in the enteric nervous system and gastrointestinal tract 
[132]. In the esophagus, stomach, small intestine, and large 
intestine, both iGluRs and mGluRs have been found. Glutamate 
is thought to be present in these areas to control muscle activity 
and bring blood to tissues [5,123,133]. The intestine primarily 
obtains glutamate from food intake, with a small amount 
coming from microbial activity within the body. Glutamate 
is involved in many functions, such as taste perception and 
digestion [24]. Mice were given probiotics in one study, and it 
was seen that this increased glutamate levels in the brain and 
helped control metabolic activities [134,135]. In a different study, 
it was found that problems with the balance of dysbiotic 
and intestinal microbiota were linked to problems with the 
glutamatergic neurotransmitter system in the hippocampus 
tissues of mice [136]. Taking everything into account, we can 
say that vesicular glutamate transporters, iGluRs, and mGluRs 
significantly contribute to the enteric nervous system, which is 
not part of the central nervous system [24,29].

CONCLUSION
Glutamate is the main excitatory neurotransmitter in the central 
nervous system and is vital for cognitive functions, learning, 
and memory processes. iGluRs (NMDA, AMPA, Kainate, Delta) 
and mGluRs do many different things, from enabling synapses 
to communicate quickly to changing over time. Neurological 
disorders such as epilepsy, autism, schizophrenia, and 
depression can be associated with the glutamatergic system 
not working properly. On the other hand, excess glutamate 
can cause excitotoxicity. In conclusion, several glutamate 
receptor modulators appear to be a promising strategy to 
address the associated pathologies.

According to future research, this will help with the creation 
of drugs that selectively affect glutamate receptors and the 
discovery of neuroprotective strategies to stop excitotoxicity. 
In particular, personalized treatments that focus on 
glutamatergic dysregulations that are specific to diseases are 

likely to be more effective and safer ways to treat neurological 
and psychiatric disorders. A deeper understanding of the 
glutamatergic system will help create new ways to treat 
neurodegenerative and psychiatric disorders. It will also be an 
important building block for a more complete explanation of 
how living things work.
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